Obróbka cieplna to proces, która ma na celu zwiększenie właściwości mechanicznych materiałów, w szczególności ich odporności na zużycie. Narzędzia, które są narażone na intensywne obciążenia i działanie agresywnych warunków, takich jak wysokie temperatury, wymagają specjalistycznej obróbki, aby poprawić ich trwałość. Właśnie tutaj obróbka cieplna odgrywa kluczową rolę, pozwalając na istotne poprawienie odporności na degradację, co przekłada się na dłuższą trwałość narzędzi.
Mechanizmy odkształcania narzędzi
Aby zrozumieć, jak obróbka cieplna poprawia odporność narzędzi na zużycie, warto przyjrzeć się mechanizmom, które prowadzą do ich uszkodzenia.
Ścieranie – proces, w którym elementy narzędzia ulegają zatarciu wskutek kontaktu z obrabianym materiałem.
Zmęczenie materiału – powstawanie mikropęknięć w strukturze pod wpływem cyklicznych obciążeń.
Adhezja – przywieranie cząsteczek materiału obrabianego do powierzchni narzędzia, co może prowadzić do jego uszkodzenia.
Korozja – degradacja materiału pod wpływem warunków atmosferycznych, takich jak wilgoć, zanieczyszczenia czy wysokie ciepło.
Obróbka cieplna umożliwia dostosowanie struktury metalu, co pomaga ograniczyć te zjawiska i wzmocnić odporność narzędzi na wytarcie.
Metody obróbki cieplnej w celu wzrostu odporności na degradację
Obróbka cieplna obejmuje różnorodne metody, które mają na celu zwiększenie właściwości narzędzi w kontekście odporności na ścieranie.
1. Hartowanie
Hartowanie to proces, w którym materiał jest podgrzewany do wysokiej ciepłoty, a następnie szybko schładzany w medium chłodzącym, takim jak olej. Efektem jest uzyskanie struktury sztywnej, która zapewnia wyjątkową twardość i wytrzymałość na zużycie. Narzędzia poddane hartowaniu są bardziej odporne na intensywne siły.
2. Odpuszczanie
Odpuszczanie jest procesem, który polega na podgrzewaniu stali do określonej gorączki, a następnie powolnym jej schładzaniu. Celem jest ograniczanie kruchości materiału i poprawianie jego plastyczności. Narzędzia, które są jednocześnie twarde i elastyczne, lepiej znoszą obciążenia mechaniczne, co zwiększa ich trwałość.
3. Azotowanie
Azotowanie to technika cieplno-chemiczna, która polega na wprowadzaniu azotu do warstwy powierzchniowej metalu. Dzięki temu powstaje twarda warstwa azotków, która istotnie poprawia odporność na zużycie oraz agresywne działanie środowiska. Narzędzia poddane azotowaniu charakteryzują się doskonałą odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur.
4. Nawęglanie
Nawęglanie to proces, który polega na wzbogaceniu powierzchni stali w węgiel, co zwiększa jej twardość. Proces ten pozostawia rdzeń materiału sprężysty, a warstwę wierzchnią wzmacnia węglem. Narzędzia nawęglane są odporne na ścieranie i regularne obciążenia.
5. Powłoki ochronne
W celu wzmocnienia odporności na zużycie, stosuje się także powłoki ochronne, takie jak chromowanie, niklowanie czy powłoki ceramiczne. Dzięki tym powłokom, narzędzia stają się bardziej odporne na ścieranie oraz wpływy wpływ środowiska.
Przykłady zastosowania obróbki cieplnej w narzędziach
1. Narzędzia skrawające
Wiertła, frezy i noże tokarskie to narzędzia, które są szczególnie narażone na intensywne zużycie. Stosowanie hartowania oraz azotowania pozwala na poprawę ich twardości oraz odporności na wysokie temperatury, co pozwala na ich dłuższe i efektywniejsze użytkowanie.
2. Narzędzia tłoczące
Matrzyce, stemple i inne narzędzia używane w procesach tłoczenia są podatne na duże obciążenia i ścieranie. Azotowanie oraz nawęglanie tych narzędzi pozwala na wzmocnienie ich odporności na ścieranie.
3. Narzędzia ręczne
Młotki, klucze, przecinaki i inne narzędzia ręczne, które wymagają wysokiej odporności, są poddawane hartowanie, co zapewnia im wydajną trwałość i odporność na uszkodzenia.
Obróbka cieplna to nieodzowny element w produkcji narzędzi, który pozwala na modyfikację właściwości materiałów i odporności na uszkodzenia. Dzięki odpowiednio dobranym procesom, takim jak hartowanie, odpuszczanie, azotowanie czy nawęglanie, możliwe jest znaczne zwiększenie żywotności narzędzi, co przekłada się na ich efektywność oraz opłacalność w długoterminowej eksploatacji.